메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술대회자료
저자정보
HIRA Toshio (National Institute of Technology, Nara College) IIDA Kenichi (National Institute of Technology, Nara College)
저널정보
제어로봇시스템학회 제어로봇시스템학회 국제학술대회 논문집 ICCAS 2022
발행연도
2022.11
수록면
1,959 - 1,962 (4page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
It is illustrated in general that the design process at the conceptual stage is highly dependent on individual skills and aesthetic sense. However, even in a subjective phase, objective aspects such as mechanical rationality are implicitly considered, and these two perspectives are inseparable. A concept of Mechanical Kansei defined as “the capability to evaluate and judge impressions in terms of unconscious, intuitive, and integrative information in mechanics,” has been proposed as a clue for interpreting the relationship between such impressions of objects and structural rationality in civil engineering and architecture fields. In this paper, we considered the Mechanical Kansei as the ability to intuitively recall shapes and forms that reflect the flow of forces from the given design domain and boundary conditions. The topology-optimized shape was taken as the structure that visualizes the flow. A Variational Autoencoder (VAE) was used to learn a set of shapes topology-optimized to the randomly located supports of a simple beam. The result shows that a two-dimensional latent variable space can derive the rational structures through the decoder without the mechanical model. This latent representation of topology-optimized shapes can be a clue to understanding the Mechanical Kansei.

목차

Abstract
1. INTRODUCTION
2. MECHANICAL KANSEI
3. TOPOLOGY-OPTIMIZED STRUCTURES AND VARIATIONAL AUTOENCODER
4. EXPERIMENTS
5. CONCLUSION
REFERENCES

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0