메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술대회자료
저자정보
P. Mäkinen (Tampere University) P. Mustalahti (Tampere University) S. Launis (Sandvik Mining and Construction Oy) J. Mattila (Tampere University)
저널정보
제어로봇시스템학회 제어로봇시스템학회 국제학술대회 논문집 ICCAS 2022
발행연도
2022.11
수록면
1,481 - 1,487 (7page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
In this paper, a model-free data fusion method for combining redundant sensor data is presented. The objective is to maintain a reliable tool center point pose measurement of a long-reach robotic manipulator using a visual sensor system with multiple cameras. The fusion method is based on weighted averaging. The weight parameter for each variable is computed using the sliding window variance with N latest observations. After each sliding window, the window length N is updated, and simple transition smoothing is included. For experimental validation, two sets of pose trajectory data from redundant visual sensors were obtained: 1) using a camera located near the tip of a long-reach manipulator running
a simultaneous localization and mapping (SLAM) algorithm and 2) marker-based tracking with cameras located near the base of the manipulator. For pose tracking, a fiducial marker was attached near the SLAM camera. The proposed methodology was examined using a real-time measurement setup and offline data analysis using the recorded data. The results demonstrate that the proposed system can increase the overall robustness and fault tolerance of the system, which are desired features for future autonomous field robotic machines.

목차

Abstract
1. INTRODUCTION
2. METHODOLOGY
3. EXPERIMENTAL SETUP
4. RESULTS AND DISCUSSION
5. CONCLUSION
REFERENCES

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0