메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술대회자료
저자정보
Yeonha Shin (Yeungnam University) Sungho Kim (Yeungnam University)
저널정보
제어로봇시스템학회 제어로봇시스템학회 국제학술대회 논문집 ICCAS 2022
발행연도
2022.11
수록면
1,301 - 1,304 (4page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
Recently, studies to replace CNN-based models with Transformer models are being actively conducted. In this paper, the Swin Transformer model, which has recently been attracting attention for its excellent performance, was trained using infrared images and its performance was examined. A Swin Transformer designed for RGB images was tuned for infrared image training to train a separate infrared pedestrian dataset and a simple experiment was performed to further improve the infrared image training performance. In addition, in order to properly tune the Swin Transformer Backbone model to the infrared image data and to improve the training performance, we trained separately configured RGB and infrared datasets and analyzed the results. As a result, it was concluded that the Swin Transformer would be suitable for infrared data training if it was slightly tuned for infrared data and lightweight to avoid overfitting. Based on this experiment, the author plans to create a model suitable for infrared datasets in the future and apply it to various practical applications.

목차

Abstract
1. INTRODUCTION
2. RELATED RESEARCH
3. TRAINING SWIN TRANSFORMEROBJECT DETECTION
4. TRAINING SWIN TRANSFORMER
5. CONCLUSION
REFERENCES

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0