메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술대회자료
저자정보
Zeyu Ding (Japan Advanced Institute of Science and Technology) Armagan Elibol (Japan Advanced Institute of Science and Technology) Nak Young Chong (Japan Advanced Institute of Science and Technology)
저널정보
제어로봇시스템학회 제어로봇시스템학회 국제학술대회 논문집 ICCAS 2022
발행연도
2022.11
수록면
642 - 649 (8page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
Multi-turn dialogue is the major manifestation of a conversation. Compared with single-turn dialogue, response selection is more complex as the context varies. We stress the importance of dialogue history and apply the pre-trained model BERT to assign proper weight to each utterance of a dialogue. Previous works take all the dialogue history as context to measure the matching degree of a context-response pair, causing the quadratic computational cost and truncation of longer sequences exceeding the length limitation of BERT. We propose a sentence-based method to deal with the aforementioned problems, obtaining the sentence embedding of a single unit utterance of dialogue and forming a classification token of a context-response pair. We discuss how to obtain a sentence embedding with high quality and to design the input representations in response selection. The results show that the average of the first-last layer output exhibits the best performance for obtaining a sentence representation. The proposed method, concatenating the sentence embeddings of context with the token embeddings of response candidates, is nearly on a par with the token embedding based SOTA method. Notably, the processable length of dialogue history is enlarged about ten times with a low computational cost, potentially reducing chatbot response time and inspiring user engagement.

목차

Abstract
1. INTRODUCTION
2. RELATED WORK
3. PROPOSED MODEL
4. EXPERIMENTS
5. COMPUTATIONAL RESULTS AND ANALYSIS
6. CONCLUSIONS AND FUTUREWORK
REFERENCES

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0