메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
양희윤 (성균관대학교) 강용훈 (성균관대학교) 김가형 (성균관대학교) 임지영 (성균관대학교) 윤수현 (성균관대학교) 김호승 (성균관대학교) 이지형 (성균관대학교)
저널정보
Korean Institute of Information Scientists and Engineers Journal of KIISE Journal of KIISE Vol.50 No.2
발행연도
2023.2
수록면
179 - 184 (6page)
DOI
10.5626/JOK.2023.50.2.179

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
여러 사회 분야에서 빅데이터와 컴퓨팅 기술의 발전을 기반으로 인공지능 기술의 도입이 활발히 이루어지고 있다. 하지만 빅데이터에 내재되어 있는 사회적인 차별요소로 인하여 인공지능의 예측이 편향된 경우가 많아 공정성 논란이 발생하고 있다. 특히, 소셜 네트워크 데이터를 다루기에 적당한 그래프 신경망에서는 유사한 노드들을 연결하려는 동질성 효과(Homophily effect) 때문에 성별, 종교 등과 같은 민감한 속성(Sensitive Attribute)에 편향된 예측이 이루어지기 쉬워서 공정성 문제가 더욱 심각하다. 이러한 공정성 문제를 해결하기 위하여, 공정한 모델 연구와 편향된 정도를 평가하기 위한 공정성 지표들이 제안되고 있다. 그러나 관련 연구들에서 각기 다른 지표를 사용해 공정성을 평가하기 때문에 통일된 기준이 없고, 모델의 정확성과 공정성이 상충관계(trade-off)에 있음을 고려하지 않아 두 성능 모두를 고려한 판단 지표가 필요하다. 본 논문은 공정성과 정확도의 관계를 고려한 지표인 Fair<SUB>β</SUB>-metric을 제안하고, 이 지표에서 우수한 성능을 내는 그래프 링크 예측 모델 FairU를 제안한다.

목차

요약
Abstract
1. 서론
2. 관련 연구
3. 제안 기법
4. 실험 구성
5. 실험 결과 및 분석
6. 결론 및 향후 연구
Referneces

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0