메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
이유환 (충북연구원)
저널정보
한국인터넷전자상거래학회 인터넷전자상거래연구 인터넷전자상거래연구 제22권 제6호
발행연도
2022.12
수록면
169 - 184 (16page)
DOI
10.37272/JIECR.2022.12.22.6.169

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
Recently, since the digital transformation waves have impacted the economic system and industry structure, conventional technology and business have been changed via the convergence of manufacturing and service, general business and platform business, etc. In this regard, this paper explores the innovation ecosystem and innovation performance of ICT manufacturing firms with respect to government innovation and R&D policy. This paper attempts to utilize cross-sectional data from 333 ICT manufacturing firms and to build two different types of innovation ecosystem models and the innovation performance model. First, the findings show that in the knowledge spillover channel model, ICT manufacturing firms tend to use IPRs and collaboration channels rather than the public domain channel. Second, in the innovation partnership model, ICT manufacturing firms prefer partnerships with private companies that are their buyers within the supply chain of the high-tech industry rather than utilizing their internal innovation resources and even local universities nearby. Third, the findings also show that in the innovation performance model, the product innovation performance of ICT manufacturing firms is highly associated with patents and R&D spending. Moreover, the product innovation performance of ICT manufacturing firms has a positive relationship with non-financial support of the government such as HR, technique, certifications, etc., but it has a negative relationship with the direct financial support of the government because it is more likely to consider about a moral hazard problem.

목차

Abstract
Ⅰ. 서론
Ⅱ. 이론적 배경
Ⅲ. 연구방법 및 데이터
Ⅳ. 분석결과
Ⅴ. 결론 및 향후 연구
참고문헌

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2023-323-000335524