메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
Kyung-Soo Park (Korea Maritime & Ocean University) Jung-Kn Kim (Intelligent System Technology) Jae-Hoon Kim (Korea Maritime & Ocean University) Seong-Dae Lee (Korea Maritime & Ocean University)
저널정보
한국마린엔지니어링학회 Journal of Advanced Marine Engineering and Technology (JAMET) 한국마린엔지니어링학회지 제46권 제6호
발행연도
2022.12
수록면
415 - 421 (7page)
DOI
10.5916/jamet.2022.46.6.415

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
Small drones of various sizes are used in numerous fields, including commerce, reconnaissance, and offensive attacks. Major facilities such as security areas of port, power, and offshore plants urgently need to develop solutions for detecting drones as an active countermeasure against small drone attacks because small drones used for military and terrorism pose a significant threat. It is not easy to detect various drones such as invasive or threatening ones, though recent developments have made it possible to detect them using three-dimensional radar. Therefore, this paper develops threatening drone identification system, which consists of two components: One is a software component for identifying threatening drones among various ones and the other is a hardware component for the system. The former uses well-known YOLO(You Look Only Once) (v7) model and the latter comprises a PC for running the model and an SWIR (Short-Wave InfraRed) camera for surveillance. Datasets for training and evaluation are constructed by hand from airborne videos taken drones including threating one and is labelled by two types: normal and threatening. The datasets are comprised of 3,992 color images and 4,410 thermal images, which are trained separately. Through experiments, we have shown that mAP@.5 and mAP@.95 are 0.999 and 0.753 (0.999 and 0.760) for color images (for thermal images), respectively. Consequently the proposed system is helpful in identifying threating drones.

목차

Abstract
1. Introduction
2. Related work
3. Threatening drone identification
4. Experiments and performance evaluation
5. Conclusion
References

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2023-559-000332970