메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
강태호 (한국건설기술연구원) 최순욱 (한국건설기술연구원) 이철호 (한국건설기술연구원) 장수호 (한국건설기술연구원)
저널정보
한국암반공학회 터널과 지하공간 터널과 지하공간 제32권 제6호(통권 제161호)
발행연도
2022.12
수록면
502 - 517 (16page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
TBM의 활용이 증가하면서 최근 국내외에서 머신러닝 기법으로 TBM 데이터를 분석하여 디스크커터의 교환주기 예측 및 굴진율을 예측하는 연구가 증가하고 있다. 본 연구에서는 굴진 시 획득되는 기계 데이터와 지반 데이터를 기반으로 최근에 다양한 분야에서 널리 사용되고 있는 머신러닝 기법들 중 회귀 모델을 접목하여 슬러리 쉴드 TBM 현장의 디스크 커터 마모 예측을 하였다. 디스크 커터 마모 예측을 위해서 Training과 Test 데이터를 7:3으로 분할하였으며, 최적의 파라미터를 선정을 위해서 분할 교차검증을 포함하는 그리드 서치를 활용하였다. 그 결과, 앙상블 계열의 그레디언트 부스팅 모델이 결정계수가 0.852, 평균 제곱근 오차가 3.111로 좋은 성능을 보여주었고 특히 학습성능과 더불어 학습속도에서 우수한 결과를 보여주었다. 현재 도출된 결과로 볼 때, 슬러리 쉴드 TBM의 기계데이터와 지반정보가 포함된 데이터를 활용한 디스크 커터 마모 예측 모델의 적합성은 높다고 보인다. 추가적으로 지반조건의 다양성과 디스크 마모 측정 데이터양을 늘리는 연구가 필요한 것으로 판단된다.

목차

ABSTRACT
초록
1. 서론
2. 기계학습 알고리즘
3. 데이터세트 구성
4. 분석 결과
5. 결론
REFERENCES

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2023-532-000319829