메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
Jung-Won Youm (Korea Rural Economic Institute) Su-Hwan Myeong (Korea Rural Economic Institute) Jeong-Ho Yoo (Pukyong National University)
저널정보
충남대학교 농업과학연구소 Korean Journal of Agricultural Science Korean Journal of Agricultural Science Vol.49 No.1
발행연도
2022.3
수록면
31 - 43 (13page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
The global trade environment is rapidly changing. The spread of COVID-19 promotes digitalization, and online transactions are becoming the new normal. Currently, Korea is actively introducing information and communication technology (ICT) that uses the internet of things (IoT) in relation to agriculture. However, few studies have analyzed the impact of digitalization on trade in the agricultural sector. Thus, the purpose of this study is to examine how the introduction of digital technology can affect the economy and trade of Korea. In this study, we estimate the impact of introducing digital technologies using the computable general equilibrium (CGE) model. The results of this analysis indicate that the GDP could increase by 3.82% to 10.53%. Also, agricultural production and trade according to the model will significantly increase to 8.67% and 5.72%, respectively, through a productivity increase from Blockchain, IoT, and artificial intelligence (AI) technologies, despite logistics inefficiencies. Although the effects of digitalization could be significant, farmers are still struggling to introduce digital technologies, stemming from the fact that government support systems are concentrated in only a few sub-sectors. In this regard, support in this area must be expanded and diversified according to the current environment of agriculture in Korea.

목차

Abstract
Introduction
Literature review
Korea’s agricultural field support policy and effects
Model and data
Scenario
Analysis results
Conclusion
References

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0