메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술대회자료
저자정보
Byungchan Han (Yonsei University)
저널정보
한국표면공학회 한국표면공학회 학술발표회 초록집 2022년도 한국표면공학회 춘계학술대회
발행연도
2022.6
수록면
60 - 63 (4page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

이 논문의 연구 히스토리 (2)

초록· 키워드

오류제보하기
A nanocatalyst is at the central position as a promoter of various chemical. Innovative design of highly functional catalyst materials has been, however, delayed. In molecular level computational electrochemistry new research paradigm has been established, which substantially incorporates IT-based artificial intelligence (AI) technology into machine learning algorism. Using the new computational methodology high-throughput screening of promising nanoparticle candidates has been attempted for various desired applications. Whether the frontier approach is successful or not is significantly controlled by the reliability and accuracy of input database. It is true that substantial amounts of the data are come by previous literatures and often ab-initio calculations with idealized model systems. The conditions in which the data were generated may be so different from the operando circumstances of the target materials. To secure extreme-level integrity of the database the in-situ measurement of nanoparticle structures should be carried out, from which the reliable correlation of the structure-performance-design principle can be identified. Using first-principles calculations we studied nanoparticles with adsorbate ligands in liquid solution to establish three-dimensional (3D) structure and property database, which are, then, analyzed through AI-based neural-network approach with high speed and accuracy. The information includes sizes, lattice distortions, and defects with picometer resolution under non-vacuum conditions. The computational outcomes are rigorously validated from the 3D liquid-cell electron microscopy. The approach is indeed ‘knowledge-based’ AI, which can be expected to make groundbreaking ways toward the quantum nanoarchitecture for hybrid interface materials.

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2023-581-000192109