메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
이주빈 (과학기술연합대학원대학교) 김태호 (한국전자통신연구원) 마유승 (한국전자통신연구원)
저널정보
Korean Institute of Information Scientists and Engineers Journal of KIISE Journal of KIISE Vol.49 No.12
발행연도
2022.12
수록면
1,143 - 1,153 (11page)
DOI
10.5626/JOK.2022.49.12.1143

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
차동 시험(differential testing)은 유사한 응용 프로그램이 동일한 입력에 대해 서로 다른 출력을 생성하는지를 관찰하여 오류를 감지하는 전통적인 소프트웨어 시험 기법이다. 인공지능 시스템에서도 차동 시험이 사용되고 있는데, 현존하는 연구 방법들은 시험 대상 신경망과 동일 기능을 수행하는 구조가 다른 고품질의 참조 대상 신경망을 찾는 비용을 요구한다. 본 논문에서는 인공지능 시스템의 차동 시험 시 다른 구조의 신경망을 찾을 필요 없이 시험 대상 신경망을 이용해 참조 모델을 만들어 시험을 수행하는 자가 차동 시험(self-differential testing) 기법을 제안하였다. 실험 결과 제안 기법은 다른 참조 모델을 필요로 하는 기존 방법보다 저비용으로 유사한 효과를 내는 것을 확인하였다. 본 논문은 자가 차동 시험의 응용인 자가 차동 분석을 활용해 분류 신경망의 정확도 근사 방법도 추가로 제안한다. 제안 기법을 통한 근사 정확도는 MNIST와 CIFAR10의 유사 데이터 셋을 이용한 실험에서 실제 정확도와 0.0002~0.09 정도의 낮은 차이로 성능 근사의 가능성을 확인할 수 있었다.

목차

요약
Abstract
1. 서론
2. 배경
3. 관련 연구
4. 본론
5. 실험
6. 결론
References

참고문헌 (21)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0