메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
Jincan Zhang (Henan University of Science and Technology) Yunhang Fan (Henan University of Science and Technology) Min Liu (Henan University of Science and Technology) Jinchan Wang (Henan University of Science and Technology) Liwen Zhang (Henan University of Science and Technology)
저널정보
대한전자공학회 JOURNAL OF SEMICONDUCTOR TECHNOLOGY AND SCIENCE Journal of Semiconductor Technology and Science Vol.22 No.6
발행연도
2022.12
수록면
407 - 416 (10page)
DOI
10.5573/JSTS.2022.22.6.407

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
Extreme Learning Machine (ELM) is a new learning algorithm for single-hidden layer feedforward neural network, which has been widely used in lots of fields. However, it still has the insufficiency of randomly determining the hidden layer threshold and output weight, which leads to ill-conditioned output. In order to avoid the risk of decreasing prediction accuracy caused by this possibility, the ELM is optimized using particle swarm algorithm. A Particle Swarm Optimization (PSO) enhanced ELM algorithm is proposed to accurately model the small-signal properties of InP Heterojunction Bipolar Transistors (HBTs). PSOELM algorithm solves the problem of unstable prediction data caused by random determination of input weights in ELM. Comparing the modeling effects of the PSO-ELM model and the ELM model under different bias conditions for a 1 μm×15 μm InP HBT, it is proved that the PSO-ELM algorithm has better consistency with the measured data.

목차

Abstract
I. INTRODUCTION
II. SMALL-SIGNAL EQUIVALENT CIRCUIT
III. EXTREME LEARNING MACHINE
4. RESULTS AND DISCUSSION
V. CONCLUSION
REFERENCES

참고문헌 (35)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2023-569-000241209