메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술대회자료
저자정보
Sungbae Jo (Seoul National University) Ilkyeong Moon (Seoul National University)
저널정보
대한산업공학회 대한산업공학회 추계학술대회 논문집 2022년 대한산업공학회 추계학술대회
발행연도
2022.11
수록면
1,076 - 1,107 (32page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
This paper considers an airline dynamic pricing problem in the presence of patient customers. Nowadays, customers behave strategically to pay lower than their willingness to pay because they know airlines are implementing dynamic pricing strategies. To capture the non-myopic characteristic, we propose a Markov decision process (MDP) including a history of offered prices as a state variable. In contrast to previous studies, distributions of customers’ properties are assumed to be unknown in advance. Deep reinforcement learning (DRL) algorithms are utilized to solve it, and the results of numerical experiments are presented to show that their performance can be improved with the proposed formulation. Comparisons between algorithms are also made to determine which can construct appropriate pricing structures for the patient and non-stationary demand. The structures of pricing policies generated from the bootstrapped deep Q-network algorithm imply that airlines should offer high and low prices alternately from the beginning of the sales period rather than increasing prices as time goes on. We also ascertain that more frequent consecutive high-priced periods can increase airlines’ revenue in environments with higher customer patience levels.

목차

Abstract
1. Introduction
2. Problem description
3. Solution methods
4. Numerical experiments
5. Conclusions
References

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2023-530-000177885