메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
Chengbin Yuan (Yangzhou University) Yu Cai (Yangzhou University) Qiang Gu (Yangzhou University) Di Sang (Yangzhou University)
저널정보
한국콘크리트학회 International Journal of Concrete Structures and Materials International Journal of Concrete Structures and Materials Vol.16 No.6
발행연도
2022.11
수록면
875 - 888 (14page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
In order to improve the construction technology level of the connection nodes of prefabricated buildings and improve the mechanical properties, fluidity and economy of the connection mortar, this paper adopts the orthogonal experimental design to improve the cement mortar by adding polymer dispersible polymer powder. A modified high-performance mortar with 1d compressive strength of 11Mpa, 3d compressive strength of 19Mpa, 7d compressive strength of 26Mpa, fluidity of 102 mm and final compressive strength higher than M25 was studied. The factors and levels of the orthogonal test are: mortar ratio 1:3,1:4,1:5; silica powder content of 4%,6%,8%; dispersible polymer powder content of 3%,5%,7%. After research, the optimal mixing ratio of modified high-performance mortar is 1:3, the content of silicon powder is 6%, the content of redispersible latex powder is 3%, the content of early strength water reducing agent is 0.1%, and the content of defoamer is 0.5%. The new modified high-performance cement mortar is characterized by short setting time and high early strength, which provides a new idea for the connecting materials of prefabricated buildings, which is of great significance for improving the integrity of prefabricated buildings and the durability of the connection.

목차

Abstract
1 Introduction
2 Materials and Methods
3 Test Results and Analysis
4 Optimal Level Combination Was Determined
5 Validation Test
6 Conclusions
References

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0