메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술대회자료
저자정보
김민애 (이화여자대학교) 김소민 (이화여자대학교) 박지현 (이화여자대학교) 허가빈 (이화여자대학교) 최윤정 (이화여자대학교)
저널정보
한국정보통신학회 한국정보통신학회 종합학술대회 논문집 한국정보통신학회 2022년도 추계종합학술대회 논문집 제26권 제2호
발행연도
2022.10
수록면
127 - 130 (4page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
본 논문은 생성자 손실함수를 이용한 가창 음성합성 모델링에 대한 연구로서 기존 이미지 생성에 최적화된 딥러닝 알고리즘 중 BEGAN모델을 오디오 생성모델(SVS모델)에 적용시킬 때 발생할 수 있는 여러 요인에 대해 분석하고 최적의 품질을 도출하기 위한 실험을 수행하였다. 특히 BEGAN 기반 모델에서 제안된 L1 loss가 어느 시점에서 감마(γ)파라미터의 역할을 상실하게 한다는 점을 개선하고자 알파(α)파라미터를 추가한 후 각 파라미터 값들의 구간별 실험을 통해 최적의 값을 찾아냄으로써 가창합성 생성물의 품질향상에 기여할 수 있음을 확인하였다.

목차

요약
ABSTRACT
Ⅰ. 서론
Ⅱ. 관련연구
Ⅲ. 제안방법
Ⅳ. 실험 및 평가
Ⅴ. 결론 및 향후 연구
References

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2023-004-000146458