메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술대회자료
저자정보
성영아 (동의대학교) 이현섭 (동의대학교) 장시웅 (동의대학교)
저널정보
한국정보통신학회 한국정보통신학회 종합학술대회 논문집 한국정보통신학회 2022년도 추계종합학술대회 논문집 제26권 제2호
발행연도
2022.10
수록면
50 - 53 (4page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
YOLOv5에서 객체 탐지를 위해 이미지를 학습 시 기존의 이미지에 위치 정보를 어노테이션 하는 과정이 필요한다. 가장 대표적인 방법이 이미지에 바운딩 박스를 그려 위치 정보를 메타정보로 저장하게 하는 것이다. 하지만 객체의 경계가 모호한 경우 바운딩 박스를 하는 것에 어려움을 겪게 된다. 그 대표적인 예시가 화재인 부분과 화재가 아닌 부분을 분류하는 것이다.
따라서 본 논문에서는 화재가 났다고 판단되는 샘플 100개의 이미지를 바운딩 박싱 개수를 달리하여 학습시켜 보았다. 그 결과 바운딩 박스를 어노테이션 시 가장자리를 가능한 크게 잡아 하나의 박스로 어노테이션하는 것보다 조금 더 세분화 하여 박스 3개로 어노테이션하여 학습시킨 모델에서 더 뛰어난 화재 탐지 성능을 보여주었다.

목차

요약
ABSTRACT
Ⅰ. 서론
Ⅱ. 기존 연구
Ⅲ. 화재 탐지를 위한 어노테이션 방법
Ⅳ. 어노테이션 방법에 탐지 성능 비교
Ⅴ. 결론
References

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2023-004-000146221