메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
서준호 (Dongguk University) 양병윤 (Dongguk University)
저널정보
한국측량학회 한국측량학회지 한국측량학회지 제40권 제5호
발행연도
2022.10
수록면
381 - 391 (11page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
본 연구는 AI 기법 중에 최근 널리 사용되고 있는 딥러닝 모델들을 비교하여 재난으로 인해 손상된 건물의 신속한 감지에 가장 적합한 모델을 선정하는 데 목적이 있다. 먼저, 신속한 객체감지에 적합한 1단계 기반 검출기 중 주요 딥러닝 모델인 SSD-512, RetinaNet, YOLOv3를 후보 모델로 선정하였다. 이 방법들은 1단계 기반 검출기 방식을 적용한 모델로서 객체 인식 분야에 널리 이용되고 있다. 이 모델들은 객체 인식 처리방식의 구조와 빠른 연산의 장점으로 인해 객체 인식 분야에 널리 사용되고 있으나 재난관리에서의 적용은 초기 단계에 머물러 있다. 본 연구에서는 피해감지에 가장 적합한 모델을 찾기 위해 다음과 같은 과정을 거쳤다. 먼저, 재난에 의한 건물의 피해 정도 감지를 위해 재난에 의해 손상된 건물로 구성된 xBD 데이터셋을 활용하여 초고해상도 위성영상을 훈련시켰다. 다음으로 모델 간의 성능을 비교 · 평가하기 위하여 모델의 감지 정확도와 이미지 처리속도를 정량적으로 분석하였다. 학습 결과, YOLOv3는 34.39%의 감지 정확도와 초당 46개의 이미지 처리속도를 기록하였다. RetinaNet은 YOLOv3보다 1.67% 높은 36.06%의 감지 정확도를 기록하였으나, 이미지 처리속도는 YOLOv3의 3분의 1에 그쳤다. SSD-512는 두 지표에서 모두 YOLOv3보다 낮은 수치를 보였다. 대규모 재난에 의해 발생한 피해 정보에 대한 신속하고 정밀한 수집은 재난 대응에 필수적이다. 따라서 본 연구를 통해 얻은 결과는 신속한 지리정보 취득이 요구되는 재난관리에 효과적으로 활용될 수 있을 것이라 기대한다.

목차

Abstract
초록
1. 서론
2. 연구 설계 및 방법론
3. 실험 결과
4. 요약 및 결론
References

참고문헌 (39)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0