메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
최영재 (중앙대학교) 박보랑 (중앙대학교) 현지연 (중앙대학교) 문진우 (중앙대학교)
저널정보
대한건축학회 대한건축학회논문집 大韓建築學會論文集 第38卷 第10號(通卷 第408號)
발행연도
2022.10
수록면
231 - 240 (10page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
An accurate occupancy prediction is essential for occupant-centric control (OCC) that saves energy while providing a comfortable indoor environment. Various machine learning-based approaches are being tried to develop an occupancy prediction model. Among these approaches, the performance of the recurrent neural network (RNN) based models, showed strength in time series forecasting and were found to be superb. However, studies related to performance comparison between RNN based models are insufficient; although the model performance had possibility for improvement through optimization. Therefore, in this study the RNN, long short-term memory (LSTM), and gated recurrent unit (GRU) models were developed to predict the number of occupants after 15, 30, and 60 minutes. The optimal models for each prediction horizon were derived through optimization and performance evaluation. As a result, the GRU model presented the best performance. The root mean squared error (RMSE) and mean absolute error (MAE) of the prediction model after 15 minutes was 0.8073, 1.5301, the prediction model after 30 minutes was 1.2841, 2.3386, and 2.0769, 3.3685, for the prediction model after 60 minutes. These results show superior performance compared to the existing RNN based models and signify that it is possible to provide accurate values for various prediction horizons. Thus, if outlier supplementation and addition of the adaptation function are implemented through an algorithm in the future, the developed models are expected to be utilized as a key element for OCC.

목차

Abstract
1. 서론
2. 연구 방법
3. 재실 인원 예측모델 개발
4. 성능평가
5. 결론
REFERENCES

참고문헌 (23)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2023-540-000204098