메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
Vivek Kumar Verma (SRM Institute of Science and Technology Ghaziabad) Satya Sai Srikant (SRM Institute of Science and Technology Ghaziabad)
저널정보
대한전자공학회 IEIE Transactions on Smart Processing & Computing IEIE Transactions on Smart Processing & Computing Vol.11 No.5
발행연도
2022.10
수록면
368 - 375 (8page)
DOI
10.5573/IEIESPC.2022.11.5.368

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
Energy harvesting prolongs the life of wireless sensor networks. Among all ambient sources of energy, solar energy is believed to be the most efficient in terms of energy density but fluctuates with time and location. The main objective of this study is to forecast solar energy for Energy Harvested Wireless Sensor Network (EHWSN) using the Facebook Prophet Library with and without a filter and to assess the model efficacy. The present study examined the models using National Renewal Energy Laboratory (NREL) one-minute sample data for June 2010 to 2016. The outliers were eliminated using a Hample filter with a standard deviation of 3 and a window size of 3. The forecast error was measured using the cross-validation feature of the Prophet Library. The Mean squared Error ( MSE), Mean Absolute Error (MAE), Mean Absolute Percentage Error (MAPE), and Root Mean Squared Error (RMSE ) values for the Prophet model were 292.81, 14.56, 19.37, and 17.11, respectively, while they were 92.56, 14.86, 14.86, and 17.10, respectively, for the Prophet model based on the Hample Filter. MAPE was reduced by 18.60 %, while the rest of the metrics changed significantly. The Prophet and Hample–Prophet give the best result regarding RMSE and accuracy compared with previous work based on the Ensemble Approach.

목차

Abstract
1. Introduction
2. Motivation
3. Literature Review
4. Methodology
5. Proposed Methodology
6. Experiment and Result Discussion
7. Conclusion
References

참고문헌 (25)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2023-569-000205361