메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술대회자료
저자정보
Li Zhao (Southwestern University of Finance and Economics) Yun Xu (Southwestern University of Finance and Economics) Xu Xu (Southwestern University of Finance and Economics)
저널정보
한국지능정보시스템학회 한국지능정보시스템학회 학술대회논문집 2022년 ICEC-한국지능정보시스템학회 공동춘계학술대회 논문집
발행연도
2022.6
수록면
84 - 97 (14page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
As a new development model of traditional e-commerce, social commerce is a new force in the digital economy, driving consumption growth and promoting social employment, especially flexible jobs. Social commerce is fast becoming one of the key instruments in promoting economic development in COVID-19. However, as a two-sided market, social commerce is easily affected by external networks, that is, the scale could be affected by the number of users and merchants in social commerce. Therefore, to explore behavior intention of social commerce, this manuscript takes innovation diffusion theory as the main framework and combines economic theory to innovatively construct different social influence mechanisms (subjective norms and critical mass) and build social commerce innovation attributes (user and platform) that measure Requires Trust for User and Compatibility, Usefulness and others for Platform. This paper collected 1007 valid samples through questionnaires. The results show that subjective norms and critical mass have a significant positive effect on social commerce behavior intention, and the two innovative attributes also affect the social influence mechanism. In conclusion, this paper expands the application of social influence in social commerce and develops the influence of the innovative attributes of social commerce on behavior through empirical research.

목차

Abstract
Introduction
Theory and hypotheses
Materials and Methodology
Results
Diseussion
Conclusion
References

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0