메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
박소희 (숭실대학교) 김승주 (숭실대학교) 윤하연 (숭실대학교) 최대선 (숭실대학교)
저널정보
한국정보보호학회 정보보호학회논문지 정보보호학회논문지 제32권 제5호
발행연도
2022.10
수록면
975 - 986 (12page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
딥러닝은 이미지 처리에 있어 우수한 성능을 보여주며 큰 주목을 받고 있지만, 입력 데이터에 대한 변조를 통해 모델이 오분류하게 만드는 적대적 공격에 매우 취약하다. 적대적 공격을 통해 생성된 적대적 예제는 사람이 식별하기 어려울 정도로 최소한으로 변조가 되며 이미지의 전체적인 시각적 특징은 변하지 않는다. 딥러닝 모델과 달리 사람은 이미지의 여러 특징을 기반으로 판단하기 때문에 적대적 예제에 속지 않는다. 본 논문은 이러한 점에 착안하여 이미지의 색상, 모양과 같은 시각적이고 상징적인 특징인 Symbolic Representation을 활용한 적대적 예제 탐지방법을 제안한다. 입력 이미지에 대한 분류결과에 대응하는 Symbolic Representation과 입력 이미지로부터 추출한 Symbolic Representation을 비교하여 적대적 예제를 탐지한다. 다양한 방법으로 생성한 적대적 예제를 대상으로 탐지성능을 측정한 결과, 공격 목표 및 방법에 따라 상이하지만 specific target attack에 대하여 최대 99.02%의 탐지율을 보였다.

목차

요약
ABSTRACT
I. 서론
II. 배경 및 관련 연구
III. Symbolic Representation 기반 적대적 예제 탐지 방법
IV. 실험 및 실험 결과
V. 고찰
VI. 결론
References

참고문헌 (24)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0