메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
강영명 (성결대학교)
저널정보
ICT플랫폼학회 JOURNAL OF PLATFORM TECHNOLOGY JOURNAL OF PLATFORM TECHNOLOGY Vol.10 No.3
발행연도
2022.9
수록면
51 - 59 (9page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
최근 혁신적으로 발전하고 있는 기계학습은 다양한 최적화 문제를 해결할 수 있는 중요한 기술이 되었다. 본 논문에서는 기계학습을 활용하여 이종망의 채널 공용화 문제를 해결하는 최신 연구 논문들을 소개하고 주된 기술의 특성을 분석하여 향후 연구 방향에 대해 가이드를 제시한다. 기존 연구들은 대체로 온라인 및 오프라인으로 빠른 학습이 가능한 Q-learning을 활용하는 경우가 많았다. 반면 다양한 공존 시나리오를 고려하지 않거나 망 성능에 큰 영향을 줄 수 있는 기계학습 컨트롤러의 위치에 대한 고려는 제한적이었다. 이런 단점을 극복할 수 있는 유력한 방안으로는 ITU에서 제안한 기계학습용 논리적 망구조를 기반으로 망 환경 변화에 따라 기계학습 알고리즘을 선택적으로 사용할 수 있는 방법이 있다.

목차

요약
Abstract
Ⅰ. 서론
Ⅱ. 기계학습을 적용한 이종망 성능 개선 연구
Ⅲ. ITU 의 기계학습 적용 망 구조
Ⅳ. 결론
Ⅴ. 참고문헌

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0