메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
Ho Sun Shon (Chungbuk National University) Erdenebileg Batbaatar (Electronics and Telecommunications Research Institute) Eun Jong Cha (Chungbuk National University) Tae Gun Kang (Korea University) Seong Gon Choi (Chungbuk National University) Kyung Ah Kim (Chungbuk National University)
저널정보
대한전기학회 전기학회논문지 전기학회논문지 제71권 제10호
발행연도
2022.10
수록면
1,393 - 1,404 (12page)
DOI
10.5370/KIEE.2022.71.10.1393

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
Predicting clinical information using gene expression is challenging given the complexity and high dimensionality of gene data. This study propose a deep learning framework for cancer diagnosis through feature extraction and classifier based on various pre-trained autoencoder technologies for kidney cancer. It can be fine-tuned for any tasks and predict clinical information by neural network classifiers. Our model achieved micro and macro F1-scores of 96.2% and 95.8% for gender, 95.8% and 76.3% for race, and 99.8% and 99.6% for sample type predictions, respectively, which is much higher than the values of traditional dimensionality reduction and machine learning techniques. In the results, the conditional variational mutation autoencoder (CVAE) improved the macro F1 score, a difficult race prediction task, by 7.6%. Our results are useful for the prognosis as well as prevention and early diagnosis of kidney cancer.

목차

Abstract
1. Introduction
2. Related works
3. Methodologies
4. Experiments
5. Results
6. Conclusions
References

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0