메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
김정윤 (Hanbat National University) 이승호 (Hanbat National University)
저널정보
한국전기전자학회 전기전자학회논문지 전기전자학회논문지 제26권 제3호
발행연도
2022.9
수록면
76 - 83 (8page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
본 논문에서는 효율적인 feature map 추출 네트워크를 이용한 2D 이미지에서의 3D 포인트 클라우드 재구축 기법을 제안한다. 본 논문에서 제안한 기법의 독창성은 다음과 같다. 첫 번째로, 메모리 측면에서 기존 기법보다 약 27% 더 효율적인 새로운 feature map 추출 네트워크를 사용한다. 제안하는 네트워크는 딥러닝 네트워크의 중간까지 크기 축소를 수행하지 않아, 3D 포인트 클라우드 재구축에 필요한 중요한 정보가 유실되지 않았다. 축소되지 않은 이미지 크기로 인해 발생하는 메모리 증가 문제는 채널의 개수를 줄이고 딥러닝 네트워크의 깊이를 얕게 효율적으로 구성하여 해결하였다. 두 번째로, 2D 이미지의 고해상도 feature를 보존하여 정확도를 기존 기법보다 향상시킬 수 있도록 하였다. 축소되지 않은 이미지로부터 추출한 feature map은 기존의 방법보다 자세한 정보가 담겨있어 3D 포인트 클라우드의 재구축 정확도를 향상시킬 수 있다. 세 번째로, 촬영 정보를 필요로 하지 않는 divergence loss를 사용한다. 2D 이미지뿐만 아니라 촬영 각도가 학습에 필요하다는 사항은 그만큼 데이터셋이 자세한 정보를 담고 있어야 하며 데이터셋의 구축을 어렵게 만드는 단점이다. 본 논문에서는 추가적인 촬영 정보 없이 무작위성을 통해 정보의 다양성을 늘려 3D 포인트 클라우드의 재구축 정확도가 높아질 수 있도록 하였다. 제안하는 기법의 성능을 객관적으로 평가하기 위해 ShapeNet 데이터셋을 이용하여 비교 논문들과 같은 방법으로 실험한 결과, 본 논문에서 제안하는 기법의 CD 값이 5.87, EMD 값이 5.81 FLOPs 값이 2.9G로 산출되었다. 한편, CD, EMD 수치가 낮을수록, 재구축한 3D 포인트 클라우드가 원본에 근접하는 정확도가 향상된 결과를 나타낸다.
또한, FLOPs 수치가 낮을수록 딥러닝 네트워크에 필요한 메모리가 적게 소요되는 결과를 나타낸다. 따라서, 제안하는 기법의 CD, EMD, FLOPs 성능평가 결과가 다른 논문의 기법들보다 메모리 측면에서 약 27%, 정확도 측면에서 약 6.3% 향상된 결과를 나타내어 객관적인 성능이 입증되었다.

목차

Abstract
요약
Ⅰ. 서론
Ⅱ. 본론
Ⅲ. 결론
References

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2023-056-000099349