메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술대회자료
저자정보
정의손 (인하대학교) 전성준 (인하대학교) 조동휘 (인하대학교) 금용호 (인하대학교) 함동균 (인하대학교) 김은지 (인하대학교) 박승보 (인하대학교)
저널정보
한국컴퓨터정보학회 한국컴퓨터정보학회 학술발표논문집 2022년 한국컴퓨터정보학회 하계학술대회 논문집 제30권 2호
발행연도
2022.7
수록면
225 - 228 (4page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
본 논문에서는 의미적 유사도 기반의 장면 분할 방법을 제안한다. 이 방법은 의미적 접근을 통해 기존 연구에서 가졌던 한계를 극복하고 정확한 장면 분할이 가능할 것으로 기대한다. 의미적 유사도 비교를 Class 종류 비교, Class별 객체의 개수 비교, 샷 간의 Histogram비교, 객체의 관심영역(ROI) Histogram비교 총 4가지 규칙으로 정의했고 이때 도출된 4가지 유사도는 전처리를 거쳐 종합 유사도를 계산한다. 또한 의미적 접근을 통해 연속되는 Shot의 유사도를 비교하고 기준값에 따라 Shot을 묶어서 최종적으로 의미적 유사도(Semantic Similarity)에 기반한 장면의 경계(Scene Boundary) 분할 방법을 제시한다.

목차

요약
Ⅰ. Introduction
Ⅱ. Related works
Ⅲ. Scene segmentation
Ⅳ. Conclusions
REFERENCES

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0