메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
반태원 (경상국립대학교)
저널정보
한국정보통신학회 한국정보통신학회논문지 한국정보통신학회논문지 제26권 제9호
발행연도
2022.9
수록면
1,305 - 1,311 (7page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
최근 모바일 단말기 및 개인형 컴퓨터의 비약적인 발전과 신경망 기술의 등장으로 영상을 활용한 실시간 안면 교체가 가능해졌다. 특히, 순환 적대적 생성 신경망은 상호 연관성이 없는 이미지 데이터를 활용한 안면 교체가 가능하게 만들었다. 본 논문에서는 적은 학습 데이터와 시간으로 안면 교체의 품질을 높일 수 있는 입력 데이터 처리 기법을 제안한다. 제안 방식은 사전에 학습된 신경망을 통해서 추출된 안면의 특이점 정보와 안면의 구조와 표정에 영향을 미치는 주요 이미지 정보를 결합함으로써 안면 표정과 구조를 보존하면서 이미지 품질을 향상시킬 수 있다. 인공지능 기반의 무참조 품질 메트릭 중의 하나인 blind/referenceless image spatial quality evaluator (BRISQUE) 점수를 활용하여 제안 방식의 성능을 정량적으로 분석하고 기존 방식과 비교한다. 성능 분석 결과에 따르면 제안 방식은 기존 방식 대비 약 4.6%~14.6% 개선된 BRISQUE 점수를 나타내었다.

목차

요약
ABSTRACT
Ⅰ. 서론
Ⅱ. 안면 교체를 위한 신경망 모델
Ⅲ. 제안 방식
Ⅳ. 성능 분석
Ⅴ. 결론
REFERENCES

참고문헌 (15)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0