메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
김윤하 (국민대학교) 김남규 (국민대학교)
저널정보
한국지능정보시스템학회 지능정보연구 지능정보연구 제28권 제3호
발행연도
2022.9
수록면
185 - 207 (23page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
최근 딥 러닝 기술의 발전으로 인해, 텍스트, 이미지 등 비정형 데이터 분석에 딥 러닝 알고리즘을 적용하는 연구가 활발히 수행되고 있다. 그중 텍스트 분류는 학계 및 업계에서 오랜 기간 연구되어 온 분야로, 분류의 성능을 향상시키기 위해 계층형 레이블 등 데이터 자체의 특성을 활용하기 위한 다양한 시도가 이루어지고 있다. 하지만 계층적 분류를 위해 주로 사용되는 하향식 접근법은 상위 레벨의 오분류가 하위 레벨의 정분류 기회를 차단한다는 한계가 있다. 따라서, 본 연구에서는 레이블의 계층적인 관계를 고려하면서도 상위 레벨의 분류가 하위 레벨의 분류를 차단하지 않도록 하여 분류성능을 향상시키기 위해, 오토인코더 기반 심층 지도 네트워크를 활용한 계층형 데이터 분류 방법론을 제안한다. 제안 방법론은 오토인코더의 잠재변수에 하위 레이블을 예측하는 주 분류기를 추가하고, 인코더의 은닉층에 상위 레벨의 레이블 예측하는 보조 분류기를 추가하여 End-to-End 학습을 진행한다. 제안 방법론의 성능을 평가하기 위하여 국내 논문 데이터 총 22,512건에 대한 실험을 수행한 결과, 제안 모델이 기존의 지도 오토인코더 및 DNN 모델에 비해 분류 정확도와 F1-Score에서 우수한 성능을 나타냄을 확인하였다.

목차

1. 서론
2. 관련 연구
3. 제안 방법론
4. 실험
5. 결론
참고문헌(References)
Abstract

참고문헌 (34)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2023-003-000128108