메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
Tua Halomoan Harahap (Universitas Muhammadiyah Sumatera Utara) Ngakan Ketut Acwin Dwijendra (Udayana University) Sulieman Ibraheem Shelash Al-Hawary (Al al-Bayt University) A. Heri Iswanto (University of Pembangunan Nasional Veteran Jakarta) Noor Mohammed Ahmed (Al-Hadba University College) Yousra Mahdi Hasan (Al-Farahidi University) Saad Ghazi Talib (Al-Mustaqbal University College) Purnima Chaudhary (GLA University Mathura-India) Yasser Fakri Mustafa (University of Mosul)
저널정보
대한산업공학회 Industrial Engineering & Management Systems Industrial Engineering & Management Systems Vol.21 No.3
발행연도
2022.9
수록면
538 - 546 (9page)
DOI
10.7232/iems.2022.21.3.538

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
The traveling salesman problem is one of the most well-known hybrid optimization problems. It is one of the (NP-complete) problems that its various applications have theoretically and operationally attracted the attention of researchers. Given that the existing optimization methods to solve such problems include many variables and constraints and reduce their practical efficiency in solving problems with larger dimensions, we have seen the use of algorithms in recent decades. In this research, after determining a linear programming model for the asylum seeker problem with asymmetric distances and solving it in Lingo software, I used two ant cloning algorithms and a forbidden search algorithm to solve the problem in large dimensions. By adjusting the parameters of the two algorithms using the Taguchi method to prove the efficiency of the two algorithms, we compared their results by solving the linear programming model in small-dimensional problems. Then, to compare the results and execution time of the two algorithms, we solved the problem in medium and large dimensions.

목차

ABSTRACT
1. INTRODUCTION
2. RESEARCH BACKGROUND
3. METHODS
4. RESULTS AND DISCUSSION
5. CONCLUSION
REFERENCES

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2023-530-000104626