메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
김수민 (Epozen’s research institute) 손정모 (Epozen’s research institute)
저널정보
한국컴퓨터정보학회 한국컴퓨터정보학회논문지 한국컴퓨터정보학회 논문지 제27권 제9호(통권 제222호)
발행연도
2022.9
수록면
33 - 40 (8page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
본 연구는 판넬형 공장 지붕의 드론 촬영 이미지를 분석해 볼트의 이상 탐지를 수행하는 시스템을 제안한다. 지붕의 점검은 현재 점검자가 직접 지붕 위로 올라가 점검을 진행한다. 하지만 고소 작업 환경으로 인한 안전사고가 지속해서 발생하고 있어 새로운 대안이 필요하다. 이에, 최근 위험 환경의 점검 방안의 대안으로 대두되는 드론 촬영의 결과물을 딥러닝을 이용해 이상 볼트의 위치를 찾아내는 방안을 통해 손쉽게 점검할 수 있도록 한다. 본 연구에서 제안하고 있는 시스템은 촬영된 드론 이미지를 볼트캡이 풀려있는 상황에 대한 샘플 이미지를 사용해 스캐닝을 진행한다. 더 나아가 스캔 된 위치에 대해 AI를 사용해 판별해 정확하게 볼트 이상 여부를 판별한다. 본 연구에서 사용한 AI는 VGGNet 기반으로 정확도 99%의 테스트 결과를 보였다.

목차

Abstract
요약
Ⅰ. Introduction
Ⅱ. Preliminaries
Ⅲ. The Proposed Scheme
Ⅳ. Conclusions
REFERENCES

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0