메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술대회자료
저자정보
이민석 (경희대학교) 이성배 (경희대학교) 남귀중 (경희대학교) 김규헌 (경희대학교)
저널정보
한국방송·미디어공학회 한국방송미디어공학회 학술발표대회 논문집 한국방송·미디어공학회 2022 하계학술대회
발행연도
2022.6
수록면
377 - 380 (4page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
최근 딥러닝(Deep Learning) 기술이 다양한 분야에서 활용되고 있으며, 사전 학습된 딥러닝 모델에 대한 압축과 전송 방안에 관한 연구 또한 활발히 진행되고 있다. 이와 관련하여, 국제 표준화 기구인 ISO/IEC 산하 MPEG(Moving Picture Expert Group)에서는 인공신경망 모델을 다양한 딥러닝 프레임워크(Deep Learning Framework)에서 상호운용 가능한 포맷으로 압축표현할 수 있는 NNC(Compression of Neural Network for Multimedia Content Description nd Analysis) 표준화를 진행하고 있다. 압축된 딥러닝 모델의 데이터를 효과적으로 저장하여 전송 및 사용하기 위해서는 ISOBMFF(ISO based Media File Format) 캡슐화 과정이 필요하다. 본 논문에서는 MPEG의 NNC 표준에 따라 사전 학습된 딥러닝 모델을 압축한 후 이를 통해 생성된 비트스트림(bitstream)을 ISOBMFF로 캡슐화하기 위한 기술을 제안 및 실험한다. 또한, 실험에 대한 검증을 위하여 생성된 ISOBMFF 데이터를 비트스트림으로 복원한 뒤 복호화하여 입력 비트스트림과 차이가 없음을 확인한다.

목차

요약
1. 서론
2. 배경 기술
3. ISOBMFF 기반 NNR 비트스트림의 캡
4. 실험 결과
5.결론
참고문헌

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2022-567-001632720