메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술대회자료
저자정보
이예지 (건국대학교) 김신 (건국대학교) 윤경로 (건국대학교)
저널정보
한국방송·미디어공학회 한국방송미디어공학회 학술발표대회 논문집 한국방송·미디어공학회 2022 하계학술대회
발행연도
2022.6
수록면
110 - 113 (4page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
기존 RDO(Rate Distortion Optimization) 기반 압축 방식은 압축 성능에 초점을 두기 때문에 영상 내 인지 특성이 무시될 수 있다. 따라서 RoI(Region of Interest)을 기반으로 압축률을 조절하는 연구가 고안[1, 2, 3, 4] 되었으며, HVS(Human Visual System) 관점에서 영상 내 중요한 부분에 대해 더 높은 품질로 영상을 압축하는 연구가 대부분이다. 최근 인공지능 기술이 발전함에 따라 지능형 영상 분석에 대한 수요가 증가하고 있으며, 이에 따라 머신 비전을 위한 영상 부호화 및 효율적인 전송에 대한 필요성이 대두되고 있다. 본 논문에서는 VVC(Versatile Video Coding)의 dQP(delta Quantization Parameter)를 활용하여 RoI(Region of Interest) 기반 압축 방법을 제안하고, 두가지의 RoI 추출 방식을 소개한다. Detectron2 Faster R-CNN X101-FPN [5]의 첫번째 탐지기를 통해 후보 영역 기반 RoI 을 추출하고, 두번째 탐지기를 통해 객체 기반 RoI 을 추출하여, 영상 내 객체 부분과 비객체 부분으로 나누어 서로 다른 압축률로 압축을 수행하였으며, 이에 따른 성능을 비교하고자 한다.

목차

요약
1. 서론
2. 제안 방법
3. 실험 결과
4. 결론
참고 문헌

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2022-567-001632104