메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술대회자료
저자정보
고재훈 (고려대학교) 조규선 (고려대학교) 김승룡 (고려대학교)
저널정보
대한전자공학회 대한전자공학회 학술대회 2022년도 대한전자공학회 하계종합학술대회 논문집
발행연도
2022.6
수록면
1,543 - 1,546 (4page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
We propose a novel loss function for 3D-aware object manipulation, and 3D GAN inversion. Our model can extract disentangled 3D attributes such as shape, appearance, and camera pose from an image, and a high-quality image is rendered from the Neural Radiance Fields (NeRF). To improve the image quality and disentanglement ability, we present two losses, global-local attribute consistency loss defined between input and output, and swapped-attribute classification loss. Furthermore, we propose a novel training method, to make a pseudo-dataset from a pre-trained 3D GAN model, which dramatically helps to stabilize the training. We conduct experiments and compare both quantitative and qualitative results with previous inversion methods, to demonstrate the effectiveness of our learning framework.

목차

Abstract
Ⅰ. 서론
Ⅱ. 본론
Ⅲ. 결과
Ⅳ. 결론 및 향후 연구 방향
참고문헌

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2022-569-001550278