메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
Jiwoong Choi (Seoul National University) Dayoung Chun (Seoul National University) Hyuk-Jae Lee (Seoul National University) Hyun Kim (Seoul National University)
저널정보
대한전자공학회 IEIE Transactions on Smart Processing & Computing IEIE Transactions on Smart Processing & Computing Vol.11 No.4
발행연도
2022.8
수록면
255 - 261 (7page)
DOI
10.5573/IEIESPC.2022.11.4.255

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
Object detection in autonomous vehicles is typically operated in an embedded system to reduce power consumption. The use of an object detection algorithm with high accuracy and real-time detection speed in the embedded systems is essential for ensuring safe driving. This study proposes a parallel processing method for GPU and CPU operations to enhance the detection speed of the model. In addition, this study proposes data augmentation and image resize techniques that consider the camera input size of autonomous driving, which increases the accuracy significantly while improving the detection speed. The application of these proposed schemes to a baseline algorithm, tiny Gaussian YOLOv3, improves the mean average precision by 1.14 percent points (pp) for the Berkeley Deep Drive (BDD) dataset and 1.34 pp for the KITTI dataset compared to the baseline. Furthermore, in the NVIDIA Jetson AGX Xavier, which is an embedded platform for autonomous driving, the proposed algorithm improves the detection speed by 22.54 % for the BDD, and 24.67 % for the KITTI compared to the baseline, thereby enabling high-speed real-time detection on both datasets.

목차

Abstract
1. Introduction
2. Proposed Acceleration Methods
3. Experimental Results
4. Conclusion
References

참고문헌 (25)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2022-569-001700832