메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술대회자료
저자정보
강정아 (서울시립대학교) 문선혜 (서울시립대학교) 곽영훈 (서울시립대학교) 허정호 (서울시립대학교)
저널정보
대한설비공학회 대한설비공학회 학술발표대회논문집 대한설비공학회 2021년도 하계학술발표대회 논문집
발행연도
2021.6
수록면
521 - 524 (4page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
The importance of a pleasant environment is increasing due to the increase in occupancy time of residential buildings, and the energy performance of buildings required by the government is also increasing. Residents" behavior is a factor that has a considerable influence on building energy, and although there is high uncertainty, it can act as an advantage in reducing building energy. This uncertainty of resident behavior can be caused by the fact that residential buildings do not have standardized behavior patterns unlike business buildings. The purpose of this study is to classify the behavioral patterns of non-standardized residential buildings into similar patterns by using the clustering technique during machine learning, and also to analyze the characteristic conditions according to the classified patterns. It is believed that the methodology and results used can be effectively used for predicting behavioral patterns and energy according to conditions that will occur in buildings in the future. Behavior data clustering was performed based on the occupancy behavior data of residential buildings measured for 20 days in the intermediate period. Among the machine learning algorithms, K-means Time Series Clustering was used, and the characteristics of each cluster were analyzed according to the classification properties.

목차

Abstract
1. 서론
2. 대상 건물
3. 행태 클러스터링 및 특성 분석
4. 결론
References

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0