메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
최재혁 (Gachon University)
저널정보
한국전기전자학회 전기전자학회논문지 전기전자학회논문지 제26권 제1호
발행연도
2022.3
수록면
62 - 66 (5page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
최근 데이터 기반의 딥러닝 기술을 적용하여 비면허 대역의 다양한 통신 신호를 분류하는 연구가 활발히 수행되고 있다. 하지만, 복잡한 신경망 모델 사용을 기반으로 이뤄진 이러한 접근법은 높은 연산 능력을 필요로 하게 되어, 자원 제약적인 무선 인터페이스 및 사물인터넷(Internet of Things) 장비에서는 사용이 제약된다. 본 연구에서는 비면허 대역의 무선 이기종 기술을 인지하기 위한 데이터 기반의 접근 방법을 살펴보고, 신호의 특징 추출 및 데이터화의 효율화 문제를 다룬다. 구체적으로, 비면허 대역의 다른 종류의 무선 통신 기술을 구분하기 위해 수신 신호 강도 측정을 기반으로 한 시계열 데이터를 이용해 합성곱 신경망(Convolutional Neural Network, CNN) 모델을 학습시켜 신호를 분류하는 방법을 살펴본다. 이 과정에서 동일한 구조의 신경망 모델의 경량화를 위한 효율적 신호의 시계열 데이터 정보 수집시 주파수 대역의 특징을 함께 특징화하는 방법을 제안하고, 그 효과를 평가한다. Bluetooth 호환의 Ubertooth 장비를 이용한 실측 기반의 실험 결과는 제안된 샘플링 기법이 동일한 신경망에 대해서 10% 수준의 샘플링 데이터 이용만으로도 동일한 정확도를 유지함을 보여준다.

목차

Abstract
요약
Ⅰ. 서론
Ⅱ. 실험 설계
Ⅲ. 딥러닝 모델 및 Zig-Zig 샘플링 기반 데이터 특성 추출 알고리즘
Ⅳ. 성능 평가
Ⅴ. 결론
References

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2022-056-001603890