메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
정혜선 (이화여자대학교) 강제원 (이화여자대학교)
저널정보
한국방송·미디어공학회 방송공학회논문지 방송공학회논문지 제27권 제4호
발행연도
2022.7
수록면
477 - 486 (10page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
본 논문에서는 컨볼루션 신경망 네트워크를 이용하여 VVC 화면 내 예측으로 얻은 예측 블록을 개선하여 잔차 신호를 보다 줄이는 화면 내 예측 방법을 제안한다. 기존의 화면 내 예측 방법은 일부 고정 규칙을 기반으로 주변의 재구성된 참조 샘플로부터 예측 블록을 생성하므로 복잡한 콘텐츠의 예측 블록을 생성하기 어렵다는 한계가 있다. 또한, 참조 샘플로 이용할 수 있는 정보의 양이 시간적 주변 정보에 비해 적기 때문에 화면 간 예측보다 낮은 부호화 성능을 가진다. 본 연구에서는 앞서 언급한 문제를 해결하기 위해 기존의 비디오 부호화 과정의 화면 내 예측을 통해 생성되는 예측 블록에 CNN을 적용하여 원본 블록과 예측 블록의 차분 신호를 줄이는 화면 내 예측 방법을 제안한다. 부호기에서는 제안 알고리즘의 활성 여부를 나타내는 플래그가 함께 부호화된다. 제안하는 화면 내 예측 방법은 최신 비디오 압축 표준인 Versatile Video Coding의 참조 모델인 VTM version 10.0[1] 대비 휘도 성분에 대하여 향상된 압축 성능을 제공한다.

목차

요약
Abstract
Ⅰ. 서론
Ⅱ. 기존 연구
III. 제안하는 알고리즘
Ⅳ. 화면 내 예측 블록 개선 신경망 학습 기법
Ⅴ. 실험 결과 및 분석
Ⅵ. 결론
참고문헌 (References)

참고문헌 (25)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0