메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
임상섭 (Korea Maritime and Ocean University) 안영중 (Korea Maritime and Ocean University)
저널정보
한국컴퓨터정보학회 한국컴퓨터정보학회논문지 한국컴퓨터정보학회 논문지 제27권 제7호(통권 제220호)
발행연도
2022.7
수록면
187 - 194 (8page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
LNG는 미래 친환경으로 가는 과도기적 에너지원으로서, 세계적인 친환경 규제, COVID-19 팬데믹, 러시아-우크라이나 전쟁 등을 계기로 엄청난 시장의 주목을 받고 있으며, 미국과 호주 등 새로운 LNG 공급처도 다양화되고 있어 LNG 스팟시장이 갈수록 커질 것으로 예상된다. 이에 반해 LNG 운송시장에 관한 연구는 그동안 소외됐었다. 본 연구는 LNG 160K 스팟운임의 단기예측에 연구를 시도하였으며 인공신경망과 ARIMA 모형을 활용하여 예측성능을 비교하였다. 본 논문의 결과, ARIMA와 인공신경망의 예측성능에 관한 우열을 가리기는 어려웠으나 ARIMA모형이 가지는 데이터 제약이 있으므로 ANN의 상대적인 자유로운 제약조건을 고려하면 LNG 160K 스팟운임 예측에 활용 가능성을 확인하였다. 본 논문은 LNG 160K 스팟운임에 관하여 인공신경망을 적용한 최초의 시도로서 학문적인 의의가 있으며, 스팟운임의 단기예측 정확성을 높여 시장 참여자들의 단기투자 의사결정의 질을 높일 수 있다는 측면에서 실무적인 기여를 할 수 있을 것으로 기대된다.

목차

Abstract
요약
I. Introduction
II. Previous Studies
III. Research Design
IV. Results
V. Conclusions
REFERENCES

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0