메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
Xiaoping Jiang (China University of Mining and Technology) Xiang Gao (China University of Mining and Technology) Chao Shi (China University of Mining and Technology)
저널정보
한국유체기계학회 International Journal of Fluid Machinery and Systems International Journal of Fluid Machinery and Systems Vol.15 No.2
발행연도
2022.6
수록면
210 - 234 (25page)
DOI
10.5293/IJFMS.2022.15.2.210

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
Aiming at the problem that it is difficult to accurately predict the flexible operation conditions and state trend of hydraulic turbine, in this paper a cascade model of BP-LSTM classification prediction is proposed, which can identify the working conditions of existing fusion data, and then predict the measuring points of different working conditions.
Based on the pressure parameters of hydraulic turbine units, the improved BP neural network is used to determine the operation conditions of hydraulic turbine units, and the classified data is redivided to establish the multivariate LSTM prediction model. By optimizing the parameters of the multivariate LSTM prediction model, such as the structure, the number of network layers and the number of hidden layer neurons, finally established the cascade model of BP-LSTM classification prediction of time series of hydraulic turbine units.
Through experimental verification and analysis, BP-LSTM classification prediction model can predict the operation trend of measuring points under different working conditions after classification. Compared with other models, BP-LSTM model has higher prediction accuracy and better effect. The cascade model of BP-LSTM classification prediction of time series provides a model basis for the research of predictive control of hydraulic turbine units.

목차

Abstract
1. Introduction
2. Analysis of BP-LSTM Cascade Model of hydraulic turbine Unit
3. The BP-LSTM classification prediction cascade model of hydraulic turbine unit
4. Conclusion
References

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0