메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
이신행 (중앙대학교) 이주연 (중앙대학교) 조민정 (중앙대학교) 박태강 (네덱스)
저널정보
한국디지털콘텐츠학회 디지털콘텐츠학회논문지 디지털콘텐츠학회논문지 제23권 제6호
발행연도
2022.6
수록면
1,115 - 1,122 (8page)
DOI
10.9728/dcs.2022.23.6.1115

이용수

DBpia Top 0.5%동일한 주제분류 기준으로
최근 2년간 이용수 순으로 정렬했을 때
해당 논문이 위치하는 상위 비율을 의미합니다.
표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
본 연구는 특정 유명인에 대한 선정적 유튜브 콘텐츠로 혐오를 조장하고 악성 댓글(이하 악플)을 확산시키는 일명 “사이버렉카” 채널에 주목해 여기에 달린 댓글을 수집한 후 기계학습 알고리즘으로 악플을 분류하여 그 어휘적 특성을 분석했다. 이를 위해 로지스틱 회귀 모델을 기계학습 알고리즘으로 사용하고 예측 성능을 높이기 위해 과적합을 방지하는 정규화 과정을 거쳤다. 그 결과, “사이버렉카” 콘텐츠는 욕설이나 비속어보다는 외모 비하나 조롱 목적의 멸칭과 모욕적 상징이 함축된 고유 명사가 사용되는 악플을 양산하고 있었고 이 과정에서 다양한 언어적 변이가 일어나고 있음을 발견했다. 이러한 결과를 바탕으로 기계학습의 방법을 이용한 악플 탐지의 가능성을 진단하고 그 한계를 극복하는 방안을 논의했다.

목차

요약
Abstract
Ⅰ. 서론
Ⅱ. 이론적 논의
Ⅲ. 본론
Ⅳ. 악플 특성 분석 결과
Ⅴ. 결론
참고문헌

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2022-004-001504858