메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술대회자료
저자정보
이연지 (성신여자대학교) 류정화 (성신여자대학교) 이일구 (성신여자대학교)
저널정보
한국정보통신학회 한국정보통신학회 종합학술대회 논문집 한국정보통신학회 2022년도 춘계종합학술대회 논문집 제26권 제1호
발행연도
2022.5
수록면
279 - 282 (4page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
급성 림프모구성 백혈병은 골수 내 미성숙 림프구 과다증식으로 인해 골수 기능이 억제되어 발생하는 급성 백혈병이다. 성인 급성 백혈병의 30% 비율을 차지하고 있으며, 소아는 항암화학요법으로 80% 이상의 완치율을 보이는 반면, 성인은 20%~50%로 저조한 생존율을 보이고 있다. 그러나 급성 림프모구성 백혈병 진단을 위한 의료영상 데이터 기반 머신러닝 알고리즘에 관한 연구가 초동 단계이다. 본 논문에서는 신속하고 정확한 진단을 위해 CNN 알고리즘모델들을 비교분석한다. 네 가지 모델을 사용하여 급성 림프모구성 백혈병 진단 모델들을 비교분석하기 위한 실험 환경을 구축하고 주어진 의료영상 데이터에 대해 정확도가 가장 우수한 알고리즘을 선택하였다. 실험 결과에 따르면 네 가지의 CNN 모델들 중에서 InceptionV3모델이 98.9%의 정확도로 가장 우수한 성능을 보였다.

목차

요약
ABSTRACT
Ⅰ. 서론
Ⅱ. CNN을 이용한 급성 림프모구성 백혈병 분류
Ⅲ. 결론
References

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2022-004-001357619