메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
이세훈 (경북대학교) 강성환 (경북대학교) 신요섭 (경북대학교) 최오규 (포항공과대학교) 김시종 (한국과학기술원) 강재모 (경북대학교)
저널정보
한국정보통신학회 한국정보통신학회논문지 한국정보통신학회논문지 제26권 제6호
발행연도
2022.6
수록면
834 - 841 (8page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
최근 스마트팩토리와 인공지능 기술의 수요 증가로 인해 다양한 분야에서 인공지능 기술을 적용하는 연구가 진행되고 있다. 결함 검사 분야에서도 인공지능 알고리즘을 도입하기 위한 노력을 기울이고 있다. 특히, 금속 외관의 결함을 검출하는 연구는 다른 소재(목재, 플라스틱, 섬유 등)의 결함을 검출하는 연구에 비해 많은 연구가 이루어지고 있다. 본 논문에서는 머신러닝 기법(서포터 벡터 머신(SVM: Support Vector Machine), 소프트맥스 회귀(Softmax Regression), 결정 트리(Decesion Tree))과 차원 축소 알고리즘(주성분 분석(PCA: Principal Component Analysis), 오토인코더(AutoEncoder))의 9가지 조합과 2가지 합성곱신경망(CNN: Convolutional Neural Network) 기법(자체 알고리즘, ResNet)의 금속 외관의 결함 분류 성능 및 속도를 비교하고 분석하는 연구를 수행하고자 한다. 두 종류의 학습 데이터셋((i) 공용 데이터셋(Public Dataset), (ii) 실측 데이터셋(Actual Dataset))에 대한 실험을 통해 각 데이터셋에 대한 성능 및 속도를 비교 분석하고, 가장 효율적인 알고리즘을 찾아낸다.

목차

요약
ABSTRACT
Ⅰ. 서론
Ⅱ. 관련 연구 동향
Ⅲ. 알고리즘
Ⅳ. 실험 및 결과
Ⅴ. 결론
References

참고문헌 (15)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2022-004-001356445