메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
Muhammad Usman (University of Management and Technology (UMT)) Saman Shahid (National University of Computer & Emerging Sciences (NUCES)) Shahid Ali (National University of Computer & Emerging Sciences (NUCES)) Muhammad Kaleem Ullah (The University of Lahore)
저널정보
대한환경공학회 Environmental Engineering Research Environmental Engineering Research 제28권 제1호
발행연도
2023.2
수록면
203 - 230 (28page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
The study included the numerical simulation of a curved open channel flow of Chashma Barrage for different velocities along left & right river banks, and water depths downstream of the river reach. The physical model was constructed in one of the experimental trays at the Irrigation Research Institute. Different trials were carried out at low, medium, and high discharges after the calibration of the physical model. A 2D computational fluid dynamics ANSYS FLUENT software was used to simulate various turbulences and flow properties for various discharges (500,000, 800,000, and 957,289 cusecs) using two different turbulent models: k-epsilon and Reynolds’s stress. The simulation findings were compared to the physical modeling results in terms of velocities and water depths for verification. In both velocity (18−27%) and water depth (18−36%) measurements, the k-model had a lower average percentage error than the RS model. On verification using physical modeling, the total average percentage difference from the k-model for all discharges was less than 25%. Numerical simulations based on computational fluid dynamics can be used to better understand turbulence and flow parameters, as well as to assess and develop barrage engineering.

목차

ABSTRACT
1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions and Recommendations
6. Limitations
References

참고문헌 (38)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2022-539-001345184