메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
Feng Zhang (Taiyuan University of Technology) Fan Yang (Taiyuan University of Technology)
저널정보
대한환경공학회 Environmental Engineering Research Environmental Engineering Research 제28권 제1호
발행연도
2023.2
수록면
179 - 190 (12page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
HNO₃-modified activated carbon was used to make electrodes for single-pass capacitive deionization for removing F<SUP>-</SUP> from drinking water. The optimal operating conditions for F¯ removal were studied, and the F¯ removal performance, cycle stability, and charge efficiency of the electrode were investigated. Based on these results, an optimization scheme was proposed for practical applications. After HNO₃ modification, the proportion of micropores, specific surface area, and number of oxygen-containing functional groups on the activated-carbon surface increased, resulting in a significant increase in the specific capacitance of the electrode. Under optimal operating conditions, the adsorption capacity of the modified electrode was 13% higher than that of the unmodified electrode, while the charge efficiency increased by 25% and reached a peak value after about 1,100 s. The HNO₃-modified electrode had good cycle stability, and maintained 83% of the original adsorption capacity after 5 cycles. Optimizing the adsorption time (1,500 s) and desorption time (900 s), 80% of the specific adsorption capacity was maintained after 5 cycles. In addition, the cycle time was reduced by 32%, and the utilization rate of electric-double-layer adsorption sites was optimized, resulting in a reduction in the energy consumption per unit F¯ removal.

목차

ABSTRACT
1. Introduction
2. Experimental
3. Results and Discussion
4. Conclusions
References

참고문헌 (36)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2022-539-001345200