메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
우희조 (한화시스템) 심지우 (메디씽큐) 김응태 (한국공학대학교)
저널정보
한국방송·미디어공학회 방송공학회논문지 방송공학회논문지 제27권 제3호
발행연도
2022.5
수록면
378 - 390 (13page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
최근 심층 합성 곱 신경망 학습의 발전에 따라 단일 영상 초해상도에 적용되는 심층 학습 기법들을 좋은 성과를 보여주고 있으며 깊은 네트워크의 강한 표현 능력으로 저해상도 영상과 고해상도 영상 사이의 복잡한 비선형 매핑이 가능해졌다. 하지만 과도한 합성곱 신경망의 사용으로 인해 증가하는 파라미터와 연산량으로 실시간 또는 저전력 장치에 적용하는데 제한이 있다. 본 논문은 정보 증류 방식을 이용하여 계층적인 특징을 조금씩 추출해내는 블록을 재귀적인 방식으로 사용하며 고주파수 잔여 정제 블록을 통해 더 정확한 고주파수 성분을 만들어 성능을 향상시키는 경량화된 네트워크인 Recursive Distillation Super Resolution Network (RDSRN) 를 제안한다. 제안하는 네트워크는 RDN과 비교했을 때 비슷한 화질의 영상을 복원하며 약 32배 적은 파라미터와 약 10배 적은 연산량을 가지고 약 3.5배 더 빠르게 영상을 복원하며 기존 경량화 네트워크 CARN과 비교했을 때 약 2.2배 적은 파라미터와 약 1.8배 빠른 처리시간으로 평균 0.16dB 더 좋은 성능을 만들어 냄을 확인 하였다.

목차

요약
Abstract
Ⅰ. 서론
Ⅱ. 기존 초해상도 관련 연구
Ⅲ. 제안된 RDSRN 초해상도 기법
Ⅳ. 모의실험 결과
Ⅴ. 결론
참고문헌 (References)

참고문헌 (17)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0