메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
저널정보
한국전자통신연구원 [ETRI] ETRI Journal ETRI Journal 제44권 제3호
발행연도
2022.6
수록면
0 - 0 (0page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
With the recent advances in technology, automatic speech recognition (ASR) has been widely used in real-world applications. The efficiency of converting large amounts of speech into text accurately with limited resources has become more vital than ever. In this study, we propose a method to rapidly recognize a large speech database via a transformer-based end-to-end model. Transformers have improved the state-of-the-art performance in many fields. However, they are not easy to use for long sequences. In this study, various techniques to accelerate the recognition of real-world speeches are proposed and tested, including decoding via multiple-utterance-batched beam search, detecting end of speech based on a connectionist temporal classification (CTC), restricting the CTC-prefix score, and splitting long speeches into short segments. Experiments are conducted with the Librispeech dataset and the real-world Korean ASR tasks to verify the proposed methods. From the experiments, the proposed system can convert 8 h of speeches spoken at real-world meetings into text in less than 3 min with a 10.73% character error rate, which is 27.1% relatively lower than that of conventional systems.

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0