메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
임정주 (Hanyang University) 김태완 (Hanyang University) 임지섭 (Hanyang University) 김준호 (Inha Technical College) 유태용 (Inha Technical College) 이원주 (Inha Technical College)
저널정보
한국컴퓨터정보학회 한국컴퓨터정보학회논문지 한국컴퓨터정보학회 논문지 제27권 제5호(통권 제218호)
발행연도
2022.5
수록면
29 - 36 (8page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
본 논문에서는 DACON에서 제공하는 데이터셋을 기반으로 한 효과적인 농산물 가격 예측 모델을 제안한다. 이 모델은 XGBoost와 CatBoost 이며 Gradient Boosting 계열의 알고리즘으로써 기존의 Logistic Regression과 Random Forest보다 평균정확도 및 수행시간이 우수하다. 이러한 장점들을 기반으로 농산물의 이전 가격들을 기반으로 1주, 2주, 4주뒤 가격을 예측하는 머신러닝 모델을 설계한다. XGBoost 모델은 회귀 방식의 모델링인 XGBoost Regressor 라이브러리를 사용하여 하이퍼 파라미터를 조정함으로써 가장 우수한 성능을 도출할 수 있다. CatBoost 모델은 CatBoost Regressor를 사용하여 모델을 구현한다. 구현한 모델은 DACON에서 제공하는 API를 이용하여 검증하고, 모델 별 성능평가를 실시한다. XGBoost는 자체적인 과적합 규제를 진행하기 때문에 적은 데이터셋에도 불구하고 우수한 성능을 도출하지만, 학습시간, 예측시간 등 시간적인 성능 면에서는 LGBM보다 성능이 낮다는 것을 알 수 있었다.

목차

Abstract
요약
Ⅰ. Introduction
Ⅱ. Preliminaries
Ⅲ. The Propose of Agricultural Product Price Prediction Model
Ⅳ. The Performance Evaluation of Agricultural Product Price Prediction Model
Ⅴ. Conclusions
REFERENCES

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0