메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
장용훈 (Yeungnam University) 이명섭 (Yeungnam University College)
저널정보
한국컴퓨터정보학회 한국컴퓨터정보학회논문지 한국컴퓨터정보학회 논문지 제27권 제4호(통권 제217호)
발행연도
2022.4
수록면
27 - 36 (10page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
본 논문에서는 이러한 어류 가공 현장의 문제점을 개선하기 위해서 AI 머신 비전을 이용한 어류의 목표 중량 절단 예측기법을 제안한다. 제안하는 방법은 먼저 입력된 물고기의 평면도와 정면도를 촬영하여 이미지기반의 전처리를 수행한다. 그런 다음 RANSAC(RANdom SAMmple Consensus)를 사용하여 어류의 윤곽선을 추출한 다음 3D 모델링을 사용하여 물고기의 3D 외부 정보를 추출한다. 이어서 추출된 3차원 특징 정보와 측정된 중량 정보를 머신러닝하여 목표 중량에 대한 절단 지점을 예측하기 위한 신경망 모델을 생성한다. 마지막으로 제안기법을 통해 예측된 절단 지점으로 직접 절단한 뒤 그 중량을 측정하였다. 그리고 측정된 무게를 목표 무게와 비교하여 MAE(Mean Absolute Error) 와 MRE(Mean Relative Error)와 같은 평가 방법을 사용해 성능을 평가하였다. 그 결과, 목표 중량과 비교해 3% 이내의 평균 오차율을 달성하였다. 제안된 기법은 향후 자동화 시스템과 연계되어 수산업 발전에 크게 기여할 것으로 전망한다.

목차

Abstract
요약
Ⅰ. Introduction
Ⅱ. Preliminaries
Ⅲ. The Proposed Scheme
Ⅳ. Experiment
Ⅴ. Threats to validity
Ⅵ. Conclusions
REFERENCES

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0