메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
Yong-hun Lee (Chungnam National University)
저널정보
한국언어학회 언어 언어 제47권 제1호
발행연도
2022.3
수록면
29 - 56 (28page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
This paper examined English negative polarity items (NPIs) with a deep learning model and statistical analysis. Warstadt et al. (2019a) developed a deep learning model with the Bidirectional Encoder Representations from Transformers (BERT), and the study analyzed English NPIs. Their dataset included a total of 400,000 sentences, and they encoded a few linguistic variables per each sentence. This paper took the same dataset in Warstadt et al. (2019a), but one more factor (Monotonicity) was included. As for the deep learning model, this paper took the BERT<SUB>LARGE</SUB> model in Lee (2021), where the syntactic acceptability was calculated with numeric scores (0~100), rather than measured by the binary classification. After the acceptability scores were calculated per each sentence, the scores were converted with z -scores, and statistical analysis was conducted with six linguistic factors and interactions of three factors. Through the analysis, the followings were observed: (i) an NPI had to exist within the scope of the licensor, (ii) downward entailment also played a significant role in the NPI licensing, and (iii) the interaction between NPI licensor and scope played more crucial roles in the NPI licensing.

목차

1. Introduction
2. Previous Studies
3. Research Method
4. Analysis Results
5. Discussion
6. Conclusion
References

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2022-701-001146834