메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
Inki Kim (Korea National University of Transportation) Beomjun Kim (Korea National University of Transportation) Sunghee Woo (Korea National University of Transportation) Jeonghwan Gwak (Korea National University of Transportation)
저널정보
한국컴퓨터정보학회 한국컴퓨터정보학회논문지 한국컴퓨터정보학회 논문지 제27권 제3호(통권 제216호)
발행연도
2022.3
수록면
33 - 43 (11page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
본 논문에서는 기존의 스마트폰 카메라 센서를 사용하여 비접촉식 손바닥 기반 사용자 식별 시스템을 구축하기 위해 Attention U-Net 모델과 사전 훈련된 컨볼루션 신경망(CNN)이 있는 다채널 손바닥 이미지를 이용한 앙상블 모델을 제안한다. Attention U-Net 모델은 손바닥(손가락 포함), 손바닥(손바닥 미포함) 및 손금을 포함한 관심 영역을 추출하는 데 사용되며, 이는 앙상블 분류기로 입력되는 멀티채널 이미지를 생성하기 위해 결합 된다. 생성된 데이터는 제안된 손바닥 정보 기반 사용자 식별 시스템에 입력되며 사전 훈련된 CNN 모델 3개를 앙상블 한 분류기를 사용하여 클래스를 예측한다. 제안된 모델은 각각 98.60%, 98.61%, 98.61%, 98.61%의 분류 정확도, 정밀도, 재현율, F1-Score를 달성할 수 있음을 입증하며, 이는 저렴한 이미지 센서를 사용하고 있음에도 불구하고 제안된 모델이 효과적이라는 것을 나타낸다. 본 논문에서 제안하는 모델은 COVID-19 펜데믹 상황에서 기존 시스템에 비하여 높은 안전성과 신뢰성으로 대안이 될 수 있다.

목차

Abstract
요약
I. Introduction
II. Preliminaries
III. Proposed Method
IV. Conclusions
REFERENCES

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0