메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
이정 (국립목포대학교) 최경원 (국립한국교통대학교) 전경숙 (국립목포대학교)
저널정보
한국지역사회간호학회 지역사회간호학회지 지역사회간호학회지 제31권 제1호
발행연도
2020.3
수록면
13 - 23 (11page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
Purpose: This study explored the contribution of social support resources to the explanation of socioeconomic inequalities in depressive symptoms of older Korean men and women. Methods: Data were derived from Living Profiles of Older People Survey (LPOPS), which comprises a nationally representative sample of non-institutionalized Korean older adults living in the community. The data were analyzed by using multiple logistic regression. The sample consisted of 4,046 men and 6,036 women aged ≥65 years. The Korean version of the Geriatric Depression Scale-Short form (SGDS-K) was employed as an outcome variable. Results: Compared to the older men and women who were in higher socioeconomic status, those in lower socioeconomic status had significantly higher risk of depressive symptoms after adjusting for other covariates. When social support resources were individually included in the base model, each factor contributed to inequalities in depressive symptoms. Social networks explained about 20% of the differential impact of education and 10% to 15% of the differential impact of household income for depressive symptoms in men. Among women, it mitigated 23.6% to 39.0% of education and household income inequalities for depressive symptoms. Social participation contributed to buffer depressive symptom inequalities of 24.0% to 46.3% among men and those of 11.7% to 45.3% among women. Conclusion: Our findings suggest community care nurses acknowledge the value of social support resources to alleviate socioeconomic inequality in depressive symptoms among older men and women.

목차

서론
연구방법
연구결과
논의
결론 및 제언
REFERENCES

참고문헌 (30)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2022-512-001085368